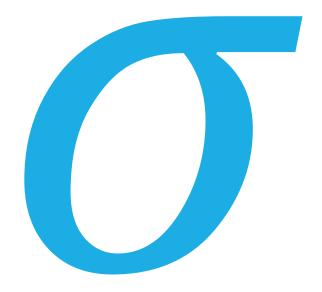


SIGMA LEVEL - CONCEPT

The Need for Data

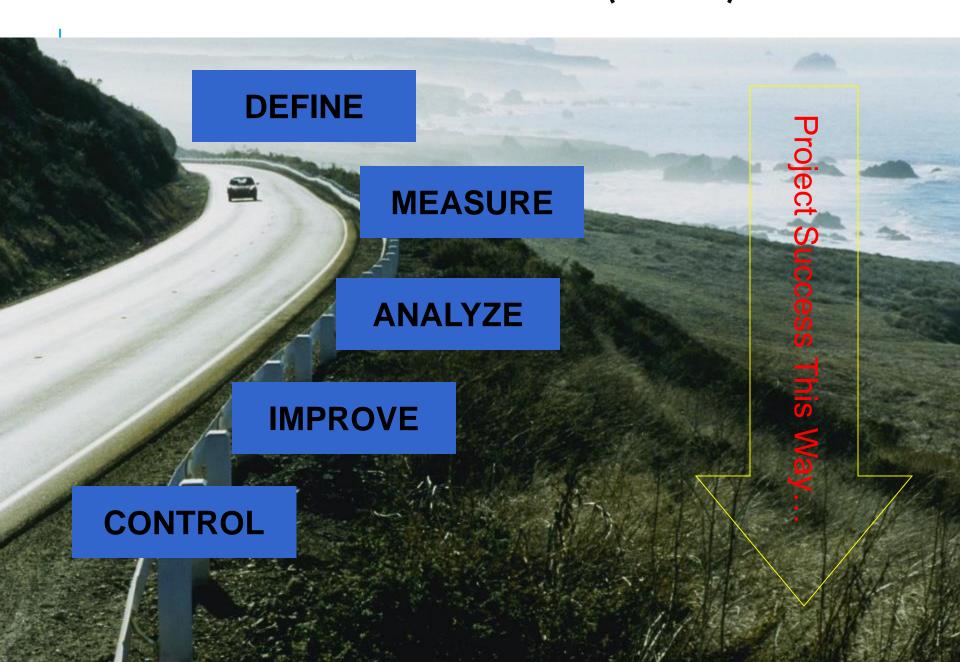
How do you make sure your soup tastes good, every time


Remember the Chef adding salt...

We need data in order to make informed, effective decisions!

SIGMA LEVEL

- Average alone is not a good measure
- Standard deviation alone tells nothing about the process performance from customers point of view
- Sigma level is a process matrix that incorporates customer requirement, average and standard deviation to tell process performance


SIX SIGMA SCALE

Sigma Level	DPMO	Percent Defects	Percent Success	Capability
1	691,462	69	31	0.33
2	308,538	31	69	0.67
3	66,807	6.7	93.3	1.00
4	6,210	0.62	99.38	1.33
5	233	0.023	99.977	1.67
6	3.4	0.00034	99.99966	2.00

PROCESS IMPROVEMENT USING 6
SIGMA FRAMEWORK

SIX SIGMA PROJECT MANAGEMENT (DMAIC)

MASTANA BURGER

 Mastana, the burger man discovers dropping sales in his Islamabad shop

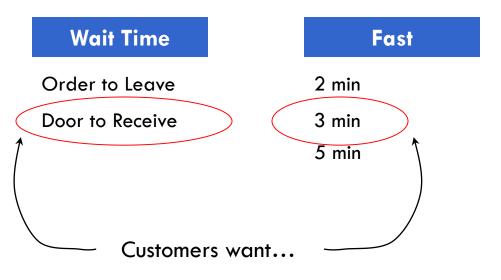

 With a thriving market for bun kebabs and burgers, Mastana is perplexed

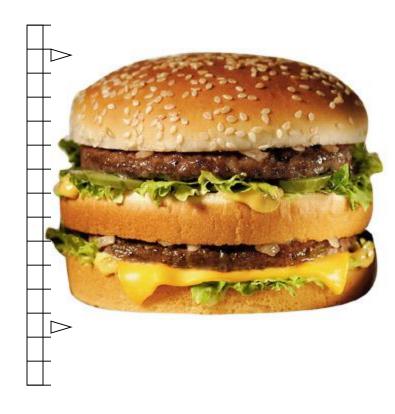
 He asks one of his friends at Bahria University to help

DEFINE PHASE

Problem Statement

Customers complain that service at Mastana is too slow despite the recent increase in the number of waiters and chefs.


Goal:


To increase the service speed enough to satisfy the customers, while maintaining burger quality.

MEASURE PHASE

Customer Expectations:

What exactly does "Faster" Service Mean?

ANALYZE PHASE

Process Capability

How well are we doing today?

We are fulfilling Customer orders within 3 minutes only 60-70 % of the time

1.75σ

Identify Variation Sources:

Why can't we be consistent?

Oil Temperature determines how long it takes to cook

And Oil Temperature varies wildly!!

IMPROVE PHASE

Solution Generation:

How do we fix it?

We must fry the kebabs as fast as possible without burning them

How do we know the right temperature?

DOE revealed the best temperature as 250C-300C

Gas pressure is set at the 4th notch

Tested Successful!

CONTROL PHASE

New Process Capability:

How are we doing NOW?

We are fulfilling Customer orders within 3 minutes only 99 % of the time

 $\rightarrow 4\sigma!$

Solution Control:

Can we ensure our solution is sustainable?

Electric Alarm bell rings every time the temperature falls below 250C or tops 300C

B – Develop Team Charter

C – High-Level Process Map

Measure

1 - Select Project KPI

2 – Define Performance Standards

3 –

Measurement System Analysis

Analyze

4 – Establish Process Capability

5- Define Performance Objectives

6 – RCA & VAA

Improve

7 – Suggest Solutions

8 – Financial Analysis

9 - Pilot Test

Control

10 — Sustain Solutions

11 -

Determine Process

Capability

12 –

Translation

R4 – Review

DEFINE PHASE

Use the tools that will help you take a top-down look at the processes from a business perspective. Start with the customer and what is important to the customer.

DEFINE PHASE STEPS

- A. Identify Project CTQs
- B. Develop Project Charter
- C. High-Level Process Map

A – Identify Project CTQs

B – Develop Team Charter

C – High-**Level Process** Map

1 - Select Project KPI

2 - Define Performance Standards

3 -

Measurement System **Analysis**

Analyze

4 – Establish Process Capability

5- Define Performance **Objectives**

6 - RCA & VAA

Improve

7 - Suggest Solutions

8 - Financial Analysis

9 - Pilot Test

Control

10 - Sustain Solutions

11 -

Determine Process

12 -

Translation

Capability

Review

A - IDENTIFY PROJECT CTQS

Focus Customer

Identify Customer Needs

Sample Tools:

- VOC
- CTQ
- Problem Re-statement

HOW TO IDENTIFY CTQS

Identify Your Customers Compile & Evaluate VOC

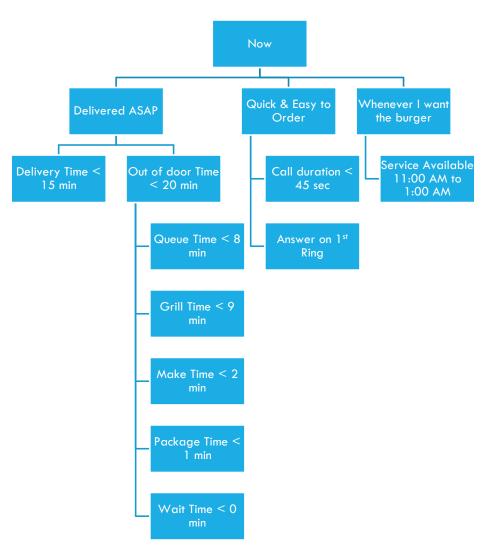
Translate VOC into CTQs

Prioritize CTQs

VOICE OF CUSTOMER

Surveys

Focus Groups


Interviews

Customer Complaints

CTQ DRILL-DOWN TREE

- List customer requirements (1st Tier of CTQ)
- 2. Address every requirement:
 - I. What does this really mean to customer
 - II. What does this mean for each sub-system or step in the process
 - III. How could me measure this?
- 3. Don't get too specific too fast. Keep the answers only one step more detailed than the first tier. Write answers in a second tier of the tree diagram.
- 4. Do a "necessary and sufficient" check of the answers
- 5. Which characteristic is required or not required for a requirement?
- 6. Continue creating tiers until you have reached characteristics at a level of detail that are meaningful to the organization and can be measured
- 7. Repeat till each customer requirement is identified. Every branch of the tree can be of different lengths.
- 8. Check that all characteristics at the end of any branch are measurable. Use operational definitions to clarify them. These are Critical-to-Quality (CTQ) characteristics.

CTQ EXAMPLE: BURGER HOME DELIVERY

A – Identify Project CTQs

B – Develop Team Charter

C – High-Level Process Map

1 – Select Project KPI

2 – Define Performance Standards

3 –

Review

Measurement System Analysis

Analyze

4 – Establish Process Capability

5- Define Performance Objectives

6 – RCA & VAA

Improve

7 – Suggest Solutions

8 – Financial Analysis

9 - Pilot Test

Control

10 — Sustain Solutions

11 -

Determine Process Capability

12 –

Translation

R4 – Review

B - DEVELOP PROJECT CHARTER

Focus Customer

Problem Statement

Goal

Project Scope

Business Case

Sample Tools:

- SMART Goals
- Includes/Excludes
- Soft Vs Hard Cost/Savings

PROBLEM RESTATEMENT

What makes a good problem statement?

- Keep it brief 2 or 3 short sentence at most
- Avoid technical language
- Quantify the problem Use any data you have available
- Explain the cost of problem
- Define the Scope

PROBLEM AND GOAL STATEMENTS

The purpose of the **Problem Statement** is to describe what is wrong.

The **Goal Statement** then defines the team's improvement objective.

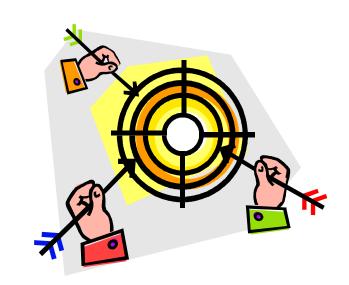
Together they provide focus and purpose for the team.

PROBLEM STATEMENT EXAMPLE

Vague Problem Statement:

Our customers are angry with us and late in paying their bills.

Improved Example:

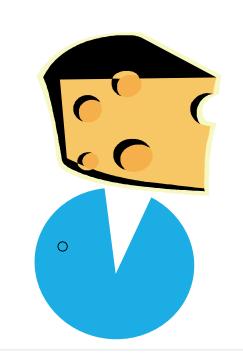

In the last 6 months (when), 20% of our repeat customers-not first-timers-are over 60 days late (what) paying our invoices. The current rate of late payments is up from 10% in 1990 and represents 30% of our outstanding receivables (magnitude). This negatively affects our operating cash flow (impact or consequence).

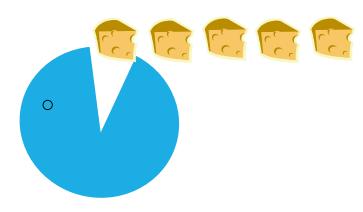
GOAL STATEMENT

Describe, in measurable terms, what success will look like when you've solved the problem

Include a statement of the performance level that will solve your problem

Also include the time frame in which you plan to implement the improvement


Remember SMART Goals


PROJECT SCOPE

How large a problem are you trying to solve in how short a time?

With your limited resources and time, what aspect of the problem can you solve?

What critical aspect of the issue should you focus on at this time?

A – Identify Project CTQs

B – Develop Team Charter

C – High-Level Process Map

1 – Select Project KPI

2 – Define Performance Standards

3 –

Measurement System Analysis

Analyze

4 – Establish Process Capability

5- Define Performance Objectives

6 – RCA & VAA

Improve

7 – Suggest Solutions

8 – Financial Analysis

9 – Pilot Test

Control

10 — Sustain Solutions

11 -

Determine Process Capability

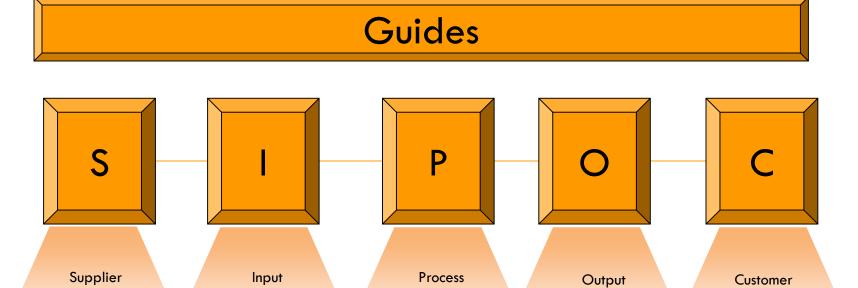
12 –

Translation

R4 – Review

C — HIGH-LEVEL PROCESS MAP

Focus Internal Processes


Layout the essential elements

Which processes are affecting the outcome

Sample Tools:

- SIPOC
- CTQ

SIPOC

Enablers (Don't Get Consumed)

Review

A – Identify Project CTQs

B – Develop Team Charter

C – High-**Level Process** Map

Measure

1 - Select Project KPI

2 - Define Performance Standards

Measurement System

Analysis

Analyze

4 – Establish Process Capability

5- Define Performance **Objectives**

6 - RCA & VAA

Improve

7 – Suggest Solutions

8 - Financial Analysis

9 - Pilot Test

Control

10 - Sustain

Determine

Translation

Solutions 11 -

Process Capability

12 -

Review

RO — DESIGN PHASE REVIEW

Problem Statement	Team & Roles:	
Project Goal Statement:		
Customers(s):		
CTQ:	Business Case – CoPQ and Projected Benefits:	
In Scope:	Out of Scope:	Hard Savings: Soft Savings:

MEASURE PHASE

Use the tools to assess current performance. Determine how current process is doing.

MEASURE PHASE STEPS

- 1. Select Project KPI
- 2. Define Performance Standards

3. Measurement System Analysis

SOURCES OF EXISTING DATA

- Customer Surveys
- Complaints
- Benchmarking Data
- Executive Level Discussions
- Job Specific Discussions
- Market Strategies
- Scorecards & Dashboards
- Focus Groups

Use all your information sources to figure out what your customers need.

A – Identify Project CTQs

B – Develop Team Charter

C – High-**Level Process** Map

Measure

1 – Select Project KPI

2 - Define Performance **Standards**

3 -

Measurement System **Analysis**

Analyze

4 – Establish Process Capability

5- Define Performance **Objectives**

6 - RCA & VAA

Improve

7 - Suggest Solutions

8 - Financial Analysis

9 - Pilot Test

Control

10 - Sustain Solutions

11 -

Determine Process

12 -

Translation

Capability

Review

1 — SELECT PROJECT KPI

Focus Y (KPI)

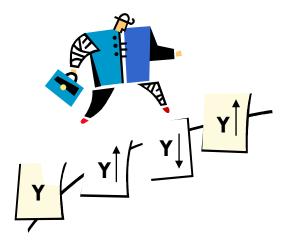
Continuous Vs Discrete Data

Identify & measure customer CTQs

Sample Tools:

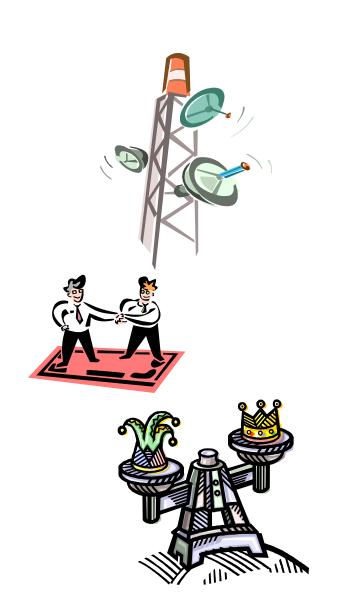
- VOC
- QFD
- FMEA

DEVELOPING A PROJECT "Y"


Y = What you will measure, including units of measure (inches, \$\$, hours, etc..)

It is CRITICAL to have a well defined Y

 Helps the team understand what the project is all about.


Provides ONE, key
measurement to determine
the success or failure of the
project

PROJECT Y EXAMPLES

- Number of hours from start to finish to refill a generator at a cell site
- The number of Days from prospecting to closure of a corporate deal
- The size of discrepancy between the forecasted and actual sales

OPERATIONAL DEFINITION

Definition:

 An operational definition is a precise description that tells how to get a value for the process Y you are trying to measure. It includes "What Something Is" and "How to Measure It"

Purpose:

- To Remove Ambiguity so that Everyone has the same understanding
- To provide a clear way to measure the characteristic
 - Identifies what to measure
 - Identifies how to measure it
 - Makes sure that no matter who does the measuring, the results are essentially the same
 - Must be useful to both you and the customer

PROCESS MAPPING

Determine scope

- Required complexity & details
- List steps

Arrange the steps in order

Assign Symbol

A – Identify Project CTQs

B – Develop Team Charter

C – High-Level Process Map

Measure

1 – Select Project KPI

2 – Define Performance Standards

3 – Measurement

System
Analysis

Analyze

4 – Establish Process Capability

5- Define Performance Objectives

6 – RCA & VAA **Improve**

7 – Suggest Solutions

8 – Financial Analysis

9 – Pilot Test

Control

10 — Sustain Solutions

11 –

Determine Process Capability

12 –

Translation

R4 – Review

2 — DEFINE PERFORMANCE STANDARDS

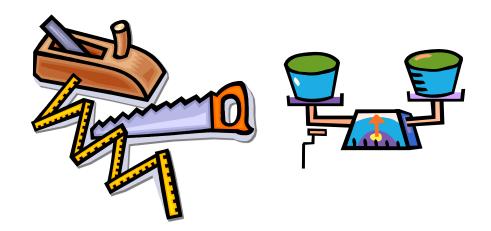
Focus Y

Define & Confirm specifications for Y

Sample Tools:

- Kano
- Customer
- blueprints

SPECIFICATION LIMITS — CONTINOUS DATA


What are the limits within which customer

remains satisfied

- USL Upper Spec Limit
- LSL Lower Spec Limit
- Target Ideal Value

DEVELOPING A DEFECT — DISCRETE DATA

- What is a defect?
 - A defect is any nonconformity in a product or process
 - A defect is an event that fails the criteria for passing.

DEFECT EXAMPLES

USL 55 minutes – Continuous

- Defect (Discrete) = any wait time plus exam time that is greater than 55 minutes;
- Units = patients examined in clinic

PERFORMANCE STANDARDS

Goal of Performance standard is to translate the customer's expectations into measurable boundaries of acceptance.

	Continuous	Discrete
Y – (Define KPI)		
USL		N/A
LSL		N/A
Unit	N/A	
Opportunity	N/A	

DMAIC MODEL

A – Identify Project CTQs

B – Develop Team Charter

C – High-Level Process Map

Measure

1 - Select Project KPI

2 – Define Performance Standards

3 — Measurement System Analysis

Analyze

4 – Establish Process Capability

5- Define Performance Objectives

6 – RCA & VAA

Improve

7 – Suggest Solutions

8 – Financial Analysis

9 – Pilot Test

Control

10 — Sustain Solutions

11 -

Determine Process Capability

12 –

Translation

R4 – Review

3 — MEASUREMENT SYSTEM ANALYSIS

Focus Y

Measurement System is adequate to measure Y

Sample Tools:

Gage R & R

MEASUREMENT SYSTEM ANALYSIS

<u>Precision</u>: Ability to repeatedly measure the same product and service and obtain same results.

<u>Accuracy</u>: Ability to produce average measured value which agrees with the true value or standard being used.

3 RS FOR PRECISION & ACCURACY

<u>Repeatability</u>: Variability between operators/device combination. Variation obtained for repeated measurements

- Data collected by the same person
- Using the same instrument
- On the same product or service
- At different times

<u>Reproducibility</u>: Variability between operators. Variation obtained due to difference in people who are taking measurements

- By different people
- Using the same instrument
- On the same product or service
- At the same time

Resolution: Sensitivity of Scale

B – Develop Team Charter

C – High-Level Process Map

Measure

1 – Select Project KPI

2 – Define Performance Standards

3 –

Measurement System Analysis

Analyze

4 – Establish Process Capability

5- Define Performance Objectives

6 – RCA & VAA

Improve

7 – Suggest Solutions

8 – Financial Analysis

9 - Pilot Test

Control

10 — Sustain Solutions

11 -

Determine Process

Capability

12 –

Translation

R4 – Review

R1 — MEASURE PHASE REVIEW

Project Y (Name of KPI):		Tool Usage:
Explanation for Selecting this KPI:		
Performance Standards:		
(Continuous Data) USL:	(Discrete Data) Unit Definition:	Notes/Graphs:
LSL:	Opportunity Definition:	
Target:	Defect Definition:	
Measurement System Analysis on Y: (How do we know the data is credible?)		

ANALYZE PHASE

Use the tools to determine the root cause(s) of the problem. Try to identify relationships between variables and what some of the key process indicators are.

ANALYZE PHASE STEPS

- 4. Establish Process Capability
- 5. Define Performance Objectives
- 6. Root Cause and Value Added Analysis

A – Identify Project CTQs

B – Develop Team Charter

C – High-**Level Process** Map

1 - Select Project KPI

2 - Define Performance Standards

3 -

Measurement System **Analysis**

Analyze

4 – Establish **Process** Capability

5- Define Performance **Objectives**

Review

6 - RCA & VAA

Improve

7 – Suggest Solutions

8 - Financial Analysis

9 - Pilot Test

Review

Control

10 - Sustain Solutions

11 -

Determine Process

12 -

Translation

Capability

Review

4 — ESTABLISH PROCESS CAPABILITY

Focus Y (KPI)

Baseline current process

Normality Test

Sample Tools:

Capability indices

A – Identify **Project CTQs**

B – Develop Team Charter

C – High-**Level Process** Map

1 - Select Project KPI

2 - Define Performance Standards

3 -

Measurement System **Analysis**

Analyze

4 – Establish Process Capability

5- Define Performance Objectives

Review

6 - RCA & VAA

Improve

7 – Suggest Solutions

8 - Financial Analysis

9 - Pilot Test

Control

10 - Sustain Solutions

11 -

Determine Process

12 -

Translation

Review Capability

5 — DEFINE PERFORMANCE OBJECTIVES

Focus Y (KPI)

Strictly define goal of project

Sample Tools:

- Benchmarking
- Team

A – Identify Project CTQs

B – Develop Team Charter

C – High-**Level Process** Map

Measure

1 - Select Project KPI

2 - Define Performance Standards

3 -

Measurement System **Analysis**

4 – Establish Process Capability

5- Define Performance **Objectives**

6 - RCA & VAA

<u>`</u>

Improve

7 – Suggest Solutions

8 - Financial Analysis

9 - Pilot Test

Control

10 - Sustain Solutions

11 -

Determine Process

12 -

Translation

Review Capability

6 — ROOT CAUSE/VALUE ADDED ANALYSIS

Focus X (Root Causes)

List of statistically significant X's based on analysis of historical data

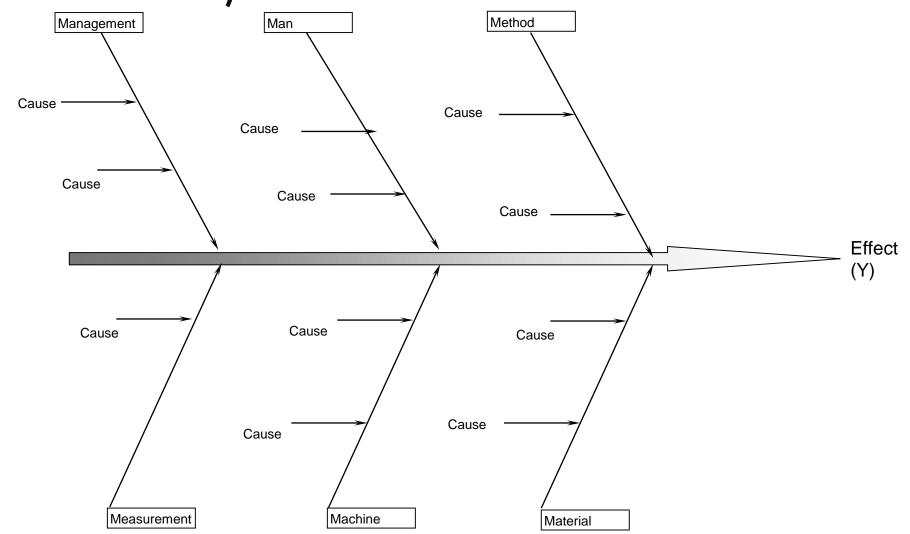
Sample Tools:

- Process Analysis
- Fishbone Analysis
- Hypothesis Testing

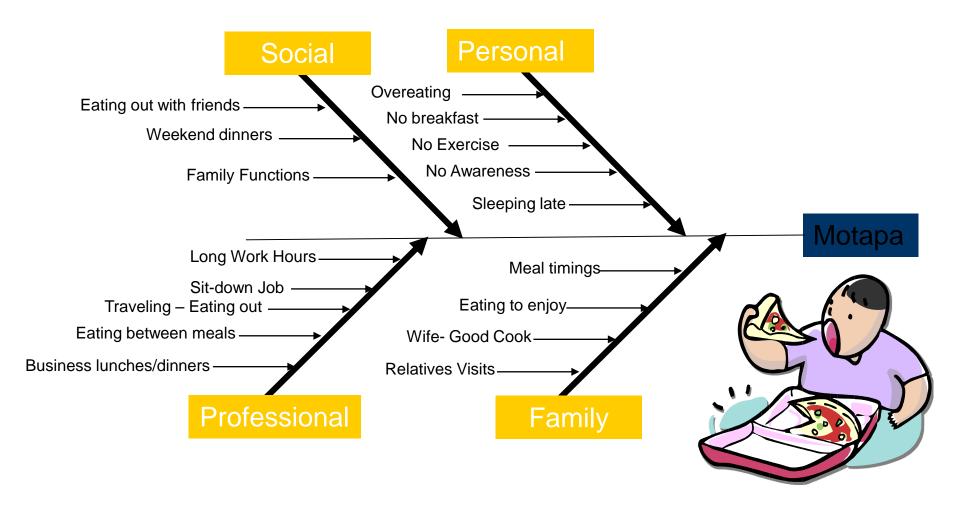
TOOL OVERVIEW: FISHBONE

Purpose:

- To determine if you have correctly identified the true problem
- To provide a visual display of all possible causes of a specific problem


When:

- To expand your thinking to consider all possible causes
- To gain group's input


Guidelines:

- Living document; often linked to a process flow diagram.
- Should be dated and considered a part of process information
- It is recommended that this diagram be created through multiple brainstorming sessions

FISHBONE DIAGRAM (CAUSE & EFFECT DIAGRAM)

CAUSE & EFFECT DIAGRAM

A – Identify Project CTQs

B – Develop Team Charter

C – High-**Level Process** Map

1 - Select Project KPI

2 - Define Performance Standards

3 -

Measurement System **Analysis**

Analyze

4 – Establish Process Capability

5- Define Performance **Objectives**

6 - RCA & VAA

Improve

7 – Suggest Solutions

8 - Financial Analysis

Review

R2

9 – Pilot Test

Control

10 - Sustain Solutions

11 -

Process

12 -

Translation

Determine Capability

Review

R2 — ANALYZE PHASE REVIEW

Baseline (Current) Sigma Level:	Tool Usage:
Performance Objective: Benchmark:	
Rationale:	Notes/Graphs:
Sources of Variation (Root Cause Analysis):	, ·
Non-Value Adding Activities (Value Addition Analysis)	

IMPROVE PHASE STEPS

- 7. Suggest Solutions
- 8. Financial Analysis
- 9. Pilot Test

DMAIC MODEL

A – Identify Project CTQs

B – Develop Team Charter

C – High-**Level Process** Map

Measure

1 - Select Project KPI

2 - Define Performance Standards

3 -

Measurement System **Analysis**

Analyze

4 – Establish Process Capability

5- Define Performance **Objectives**

6 - RCA & VAA

Improve

7 – Suggest Solutions

8 - Financial **Analysis**

9 - Pilot Test

Control

10 - Sustain Solutions

11 -

Determine Process

12 -

Translation

Review Capability

7 — SUGGEST SOLUTIONS

Focus X (Critical Inputs)

Determine vital few X's that cause changes to your Y

Sample Tools:

- Anti Solution
- Six Thinking Hats
- Work-out

OUT-OF-THE-BOX THINKING

Force yourself and your team to question the "first" solution that comes to mind

ANTI-SOLUTION

- Brainstorm ways to make the problem worse
- Reverse the output to discover creative solutions

ROADBLOCKS FOR CREATIVE SOLUTION

Premature judgment.

Searching for the single answer

Assumption of the fixed pie

Solving their problem is their problem

A – Identify Project CTQs

B – Develop Team Charter

C – High-Level Process Map

Measure

1 - Select Project KPI

2 – Define Performance Standards

3 –

Measurement System Analysis

Analyze

4 – Establish Process Capability

5- Define Performance Objectives

6 – RCA & VAA Improve

Review

7 – Suggest Solutions

8 — Financial Analysis

9 – Pilot Test

Control

10 — Sustain Solutions

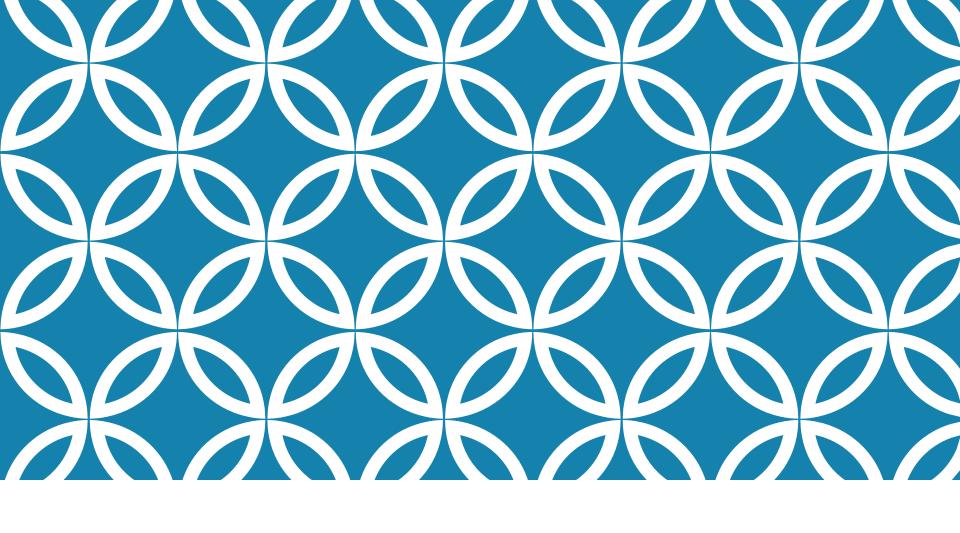
11 -

Determine Process Capability

12 –

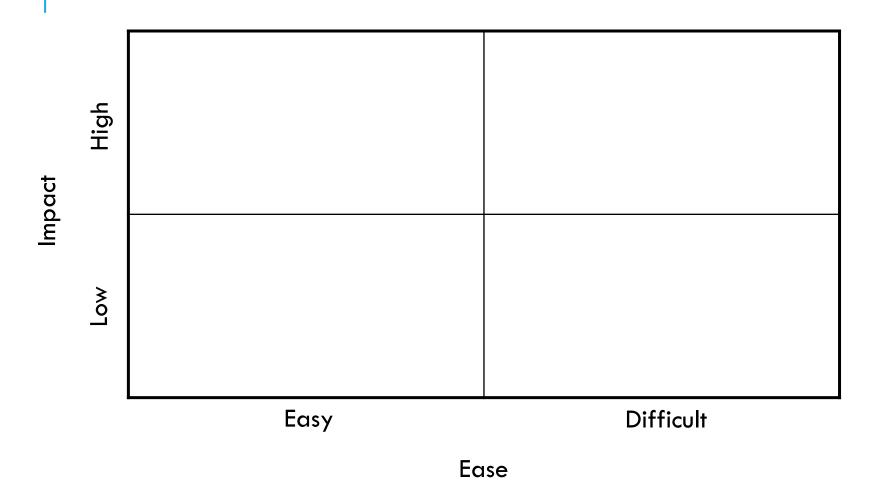
Translation

R4 – Review


8 — FINANCIAL ANALYSIS

Focus X

Specify tolerance on the vital few X's; suggest solution options that address the problems


Sample Tools:

- Cost Benefit Analysis
- Pay Back Period
- IRR

FINALIZING IMPROVEMENTS

EASE-IMPACT MATRIX

Control diet while eating out with friends

Healthy breakfast

Stop eating while still not full

Regular Exercise

Control diet during travel

Increase obesity
Awareness

Stop eating between meals

Sleeping early

Regular meals

Reduce recreational eating

Request spouse to cook vegetables/soups

REDUCING WEIGHT EASE IMPACT MATRIX

Stop eating while still not full Healthy breakfast Increase obesity Awareness	Stop eating between meals Regular Exercise Sleeping early Reduce recreational eating
Control diet during travel Request spouse to cook vegetables/soups	Regular meals Control diet while eating out with friends

Ease

Difficult

Easy

Impact

A – Identify Project CTQs

B – Develop Team Charter

C – High-Level Process Map

Measure

1 - Select Project KPI

2 – Define Performance Standards

3 –

Measurement System Analysis Analyze

4 – Establish Process Capability

5- Define Performance Objectives

6 – RCA & VAA Improve

Review

7 – Suggest Solutions

8 – Financial Analysis

9 – Pilot Test

Control

10 — Sustain Solutions

11 -

Determine Process Capability

12 –

Translation

R4 – Review

9 — PILOT TEST

Focus Y, X

Test out the options in a safe, controlled environment

Sample Tools:

- Simulation
- Test Bed

When a solution has been identified, you need to validate that the solution is adequate.

Pilot: a process improvement that you will test on a small scale in a real business environment.

The Pilot objective is to collect data from the test site to:

- Confirm that your proposed solution will achieve the targeted performance (e.g. increasing service level or reducing congestion)
- Identify any potential implementation problems (technology, training, etc.) prior to full scale implementation

EXAMPLES

Medicine companies

Agriculture

Beta versions of software

Development sector interventions

BENEFITS

Pilot run validates assumptions and analysis of the project team

Gives more confidence in solution

Provide a chance to fine tune the solution

Helps in getting buy-in of the stakeholders

DMAIC MODEL

A – Identify Project CTQs

B — Develop Team Charter

C – High-Level Process Map Measure

1 – Select Project KPI

2 – Define Performance Standards

3 –

Measurement System Analysis Analyze

4 – Establish Process Capability

5- Define Performance Objectives

6 – RCA & VAA **Improve**

7 – Suggest Solutions

8 — Financial Analysis

9 - Pilot Test

Control

10 — Sustain Solutions

11 -

Determine Process Capability

12 –

Translation

R4 – Review

R3 — IMPROVE PHASE REVIEW

Proposed Solution(s):	Tool Usage:
Financial Analysis (if investment required):	
Cost Benefit Analysis of Each Solution Proposed	
, ' '	Notes/Graphs:
Pilot Test Results:	

CONTROL PHASE STEPS

10. Sustain Solutions

- 11. Determine Process Capability
- 12. Translation

DMAIC MODEL

A – Identify Project CTQs

B – Develop Team Charter

C – High-**Level Process** Map

Measure

1 - Select Project KPI

2 - Define Performance Standards

3 -

Measurement System **Analysis**

Analyze

4 – Establish Process Capability

5- Define Performance **Objectives**

6 - RCA & VAA

Improve

7 – Suggest Solutions

8 - Financial Analysis

9 - Pilot Test

Control

10 - Sustain Solutions

11 -

Determine Process Capability

12 -

Translation

Review

10 — SUSTAIN SOLUTIONS

Focus Y, X

Mistake-proof the issue such that the problem never recurs

Sample Tools:

- Poka Yoke
- Visual Management
- Control Charts
- FMEA

POKA YOKE (MISTAKE PROOFING)

- *Elimination: redesign the system to eliminate the chance of the error.
- *Facilitation: provide methods of guidance, hard and soft, to minimize the chance of an error.
- *Mitigation: lessen the effect of the error if the resulting defect gets to the customer.
- *Flagging: proven methods for insuring 100% chance of capturing and removing all defective units prior to shipment

STANDARD WORK — WHAT?

Method of improving work efficiency by:

- Designing the best method to complete a work task
- Documenting the method
- Training employees involved in process to use this method

DMAIC MODEL

A – Identify Project CTQs

B – Develop Team Charter

C – High-Level Process Map

Measure

1 - Select Project KPI

2 – Define Performance Standards

3 –

Measurement System Analysis Analyze

4 – Establish Process Capability

5- Define Performance Objectives

6 – RCA & VAA Improve

7 – Suggest Solutions

8 – Financial Analysis

9 – Pilot Test

Control

10 — Sustain Solutions

11 –DetermineProcessCapability

Review

84

12 –

Translation

11 — DETERMINE PROCESS CAPABILITY

Focus Y, X

Determine post improvement capability and performance; Financial Validation

Sample Tools:

Capability Indices

DMAIC MODEL

A – Identify Project CTQs

B – Develop Team Charter

C – High-**Level Process** Map

Measure

1 - Select Project KPI

2 - Define Performance Standards

3 -

Measurement System **Analysis**

Analyze

4 – Establish Process Capability

5- Define Performance **Objectives**

6 - RCA & VAA

Improve

7 – Suggest Solutions

8 - Financial Analysis

9 - Pilot Test

Control

10 - Sustain Solutions

11 -

Determine

Review

Process Capability

12 –

Translation

12 — TRANSLATION

Focus X

Develop and implement process control plan

le Review I

DMAIC MODEL

A – Identify Project CTQs

B – Develop Team Charter

C – High-Level Process Map

Measure

1 - Select Project KPI

2 – Define Performance Standards

3 –

Measurement System Analysis

Analyze

4 – Establish Process Capability

5- Define Performance Objectives

6 – RCA & VAA

7 – Suggest Solutions

8 – Financial Analysis

9 - Pilot Test

Control

10 — Sustain Solutions

11 –

Determine Process Capability

12 –

Translation

S - Kev

R4 — CONTROL PHASE REVIEW

Systems for sustaining the Improvement (SOPs, Poka Yoke, Control Charts, etc)	Tool Usage: (FMEA/Mistake Proofing/Visual Management/Control Charts)
New Process Capability:	
Sigma Level:	
DPMO:	
Process Control Plan:	

THANK YOU